nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 08, v.43 25-34+53
以铝蜂窝为夹芯的玻璃纤维增强复合材料夹层结构弯曲性能研究
基金项目(Foundation): 国家自然科学基金项目(12362012); 内蒙古自治区高校创新科研团队计划(NMGIRT2402); 内蒙古高等学校基础研究计划基金(JY20230103)
邮箱(Email): gaoxp@imut.edu.cn;
DOI:
摘要:

针对汽车结构的轻量化,探究夹层复合材料的三点弯曲失效行为、载荷-位移特性及能量吸收特性。该夹层结构由2层玻璃纤维增强树脂复合材料面板与1层铝蜂窝芯层构成,研究铝蜂窝边长、壁厚和芯层高度对材料弯曲峰值载荷与能量吸收性能的影响,进而明确材料在铝蜂窝纵向(L)和横向(W)能量吸收特性的差异。研究表明:随着铝蜂窝芯层高度的增加,试样的弯曲峰值载荷和总能量吸收能力均有所提升,芯层高度由5 mm提高到15 mm时,试样沿纵向和横向弯曲峰值载荷分别提高60.55%和88.77%,但芯层过高易引发材料的局部屈曲;铝蜂窝边长减小可提高芯体支撑刚度,增强抗弯性能与能量吸收效率;在相同参数下,纵向试样的能量吸收总量和峰值载荷均优于横向成型试样,其破坏过程表现为更稳定的渐进压溃,而横向试样易发生剪切失效。

Abstract:

The lightweight design of automotive structures has been investigated by examining the three-point bending failure behavior, load-displacement characteristics, and energy absorption properties of sandwich composite. The sandwich structure consists of two glass fiber reinforced epoxy composite panels and an aluminum honeycomb core. By studying the effects of aluminum honeycomb side lengths, wall thickness and core thickness on the bending peak load and energy absorption performance of the material were analyzed. Furthermore, the differences in energy absorption characteristics between the longitudinal(L) and transverse(W) directions of the honeycomb were clarified. The study revealed that increasing the aluminum honeycomb core thicknesses enhances both the bending peak load and total energy absorption capacity of the specimens. When the core thicknesses was raised from 5 mm to 15 mm, the peak bending loads in the longitudinal and transverse directions increased by 60.55% and 88.77%, respectively. However, excessively high core thicknesses are prone to induce local buckling. Reducing the aluminum honeycomb side lengths improves the core support stiffness, thereby enhancing both bending resistance and energy absorption efficiency. Under identical parameters, specimens fabricated in the longitudinal exhibited superior total energy absorption and peak load compared to those in the transverse, and its failure process shows a more stable progressive crushing, while the transverse sample is prone to shear failure.

参考文献

[1] CACERES C H.Economical and environmental factors in light alloys automotive applications[J].Metallurgical and Materials Transactions A,2007,38(7):1649-1662.

[2] 王皓辉,徐洋,盛晓伟.蜂窝夹层结构材料在簇绒地毯织机主轴空间降噪中的应用[J].东华大学学报(自然科学版),2021,47(3):105-111.

[3] STEEVES C A,FLECK N A.Collapse mechanisms of sandwich beams with composite faces and a foam core,loaded in three-point bending.Part I:analytical models and minimum weight design[J].International Journal of Mechanical Sciences,2004,46(4):561-583.

[4] VITALE J P,FRANCUCCI G,XIONG J,et al.Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels[J].Composites Part A:Applied Science and Manufacturing,2017,94:217-225.

[5] MEI Z K,PEI Z L,CHENG L L,et.al.Impact behavior analysis and failure mode comparison of glass fiber (GF)/polydicyclopentadiene (PDCPD) thermosetting composite for automobile bottom protection plate[J].Journal of Donghua University (English Edition),2024,41(6):595-606.

[6] WANG J F,SHI C Y,YANG N,et al.Strength,stiffness,and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body[J].Composite Structures,2018,184:1189-1196.

[7] LIU Q,HUANG Z M.Investigation on nonlinear constitutive relationship for a honeycomb sandwich composite[J].Advanced Materials Research,2011,291/292/293/294:1025-1038.

[8] XIA F K,DURANDET Y,TAN P J,et al.Three-point bending performance of sandwich panels with various types of cores[J].Thin-Walled Structures,2022,179:109723.

[9] LIN Y,YANG Z Y,WANG X D,et al.The design of continuous carbon fiber composite honeycombs and study on its properties[J].Journal of Composite Materials,2022,56(24):3729-3747.

[10] SUN G Y,HUO X T,CHEN D D,et al.Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression[J].Materials & Design,2017,133:154-168.

[11] SHI S S,SUN Z,HU X Z,et al.Flexural strength and energy absorption of carbon-fiber–aluminum-honeycomb composite sandwich reinforced by aluminum grid[J].Thin-Walled Structures,2014,84:416-422.

[12] XIONG J,MA L,STOCCHI A,et al.Bending response of carbon fiber composite sandwich beams with three dimensional honeycomb cores[J].Composite Structures,2014,108:234-242.

[13] DU Y C,YAN N,KORTSCHOT M T.Light-weight honeycomb core sandwich panels containing biofiber-reinforced thermoset polymer composite skins:fabrication and evaluation[J].Composites Part B:Engineering,2012,43(7):2875-2882.

[14] ZHANG J X,ZHU Y Q,YUAN H,et al.Failure behavior of sandwich beams with glass fiber-reinforced epoxy/aluminum laminates face-sheets and aluminum honeycomb core under three-point bending[J].Thin-Walled Structures,2022,177:109476.

[15] ZHANG Z J,WEI X,WU K,et al.Failure analysis of brazed sandwich structures with square honeycomb-corrugation hybrid cores under three-point bending[J].Thin-Walled Structures,2022,170:108591.

[16] RUSSELL B P,LIU T,FLECK N A,et al.Quasi-static three-point bending of carbon fiber sandwich beams with square honeycomb cores[J].Journal of Applied Mechanics,2011,78(3):031008.

[17] ANANDAN S,DHALIWAL G,GANGULY S,et al.Investigation of sandwich composite failure under three-point bending:simulation and experimental validation[J].Journal of Sandwich Structures & Materials,2020,22(6):1838-1858.

[18] BABA M N.A recursive trapezoid-based algorithm designed to compute the strength-and stiffness-related geometric properties of beams with polygonal cross-sections[J].Mechanics Based Design of Structures and Machines,2024,52(12):10073-10097.

[19] WANG S L,GE L,XUE W L,et.al.Design and development of multi-layer honeycomb-filled woven fabric with enhanced impact resistance[J].Journal of Donghua University (English Edition),2024,41(1):37-45.

[20] 陈振中,刘志伟,李晓科,等.复合材料天线罩多尺度可靠性优化设计[J].东华大学学报(自然科学版),2024,50(6):75-85.

[21] NIU W J,YAN X P,HE Q,et al.Experimental study on compression properties of composite aluminum honeycomb sandwich structures[J].Polymer Composites,2024,45(16):14706-14714.

基本信息:

DOI:

中图分类号:U465.6

引用信息:

[1]刘成伟,高晓平,王曦远,等.以铝蜂窝为夹芯的玻璃纤维增强复合材料夹层结构弯曲性能研究[J].产业用纺织品,2025,43(08):25-34+53.

基金信息:

国家自然科学基金项目(12362012); 内蒙古自治区高校创新科研团队计划(NMGIRT2402); 内蒙古高等学校基础研究计划基金(JY20230103)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索